Selasa, 29 Maret 2011

SYSTEM PENGENDALIAN MOTOR

Tahapan mengoperasikan motor pada dasarnya dibagi menjadi 3 tahap, yaitu :
1. Mulai Jalan (starting)
Untuk motor yang dayanya kurang dari 4 KW, pengoperasian motor dapat disambung secara langsung (direct on line). Sedangkan untuk daya yang besar pengasutannya dengan pengendali awal motor (motor starter) yang bertujuan untuk meredam arus awal yang besarnya 5 sampai 7 kali arus nominal.

2. Berputar (running)
Beberapa saat setelah motor mulai jalan, arus yang mengalir secara bertahap segera menurun ke posisi arus nominal. Selanjutnya motor dapat dikendalikan sesuai kebutuhan, misalnya dengan pengaturan kecepatan, pembalikan arah perputaran, dan sebagainya.
3. Berhenti (stopping)
Tahap ini merupakan tahap akhir dari pengoperasian motor dengan cara memutuskan aliran arus listrik dari sumber tenaga listrik, yang prosesnya bisa dikendalikan sedemikian rupa (misalnya dengan pengereman / break), sehingga motor dapat berhenti sesuai dengan kebutuhan.
Jenis kendali motor ada 3 macam, yaitu :
1. Kendali Manual
Instalasi listrik tenaga pada awalnya menggunakan kendali motor konvensional secara manual. Untuk menghubungkan atau memutuskan aliran arus listrik digunakan saklar manual mekanis, diantaranya adalah saklar togel (Toggle Switch). Saklar ini merupakan tipe saklar yang sangat sederhana yang banyak digunakan pada motor-motor berdaya kecil. Operator yang mengoperasikannya harus mengeluarkan tenaga otot yang kuat.
2. Kendali Semi Otomatis
Pada kendali semi otomatis, kerja operator sedikit ringan (tidak mengeluarkan tenaga besar), cukup dengan jari menekan tombol tekan start saat awal menggerakkan motor dan menekan tombol stop saat menghentikan putaran motor. Untuk menghubungkan atau memutuskan aliran arus listrik menggunakan konduktor magnit, yang bisa dilengkapi rele pengaman arus lebih (Thermal Overload Relay) sebagai pengaman motor.
3. Kendali Otomatis
Dengan kendali otomatis, kerja operator semakin ringan, yaitu cukup memonitor kerja dari sistem, sehingga dapat menghemat energi fisiknya. Deskripsi kerja dari sistem kendali otomatis dibuat dengan suatu program dalam bentuk rangkaian konduktor magnit yang dikendalikan oleh sensorsensor, sehingga motor dapat bekerja maupun berhenti secara otomatis.
 

Pemeriksaan sistem pengendali

Seperti yang telah dibahas pada bagian sebelumnya bahwa pengendali elektronika daya memungkinkan dilakukannya pengaturan daya listrik dalam bermacam- macam cara guna memenuhi kebutuhan. Peralatan ini tergolong modern dan mahal. Oleh karena itu, dalam pemakaiannya membutuhkan pengetahuan dan keterampilan yang sangat memadai. Pengetahuan tentang konsep dan prinsip seperti yang telah diuraikan di atas, baik yang terkait dengan komponen- komponen, seperti dioda, thyristor, diac dan triac, maupun unit seperti penyearah tak terkendali, penyearah terkendali dan juga pengatur listrik ac. Tanpa pengetahuan dasar dan konsep yang memadai adalah mustahil untuk dapat menggunakan pengendali elektronika daya dengan baik. Di samping konsep-konsep dasar, ada tiga kemampuan penting yang harus Anda miliki untuk dapat menggunakan peralatan ini dengan baik, yaitu: persiapan, pengoperasian dan pemeriksaan.

Langkah persiapan perlu dilakukan untuk menyakinkan bahwa komponen dan rangkaian berada dalam keadaan baik dan aman. Kemampuan pengoperasian merupakan kemampuan yang harus dimiliki oleh setiap teknisi di lapangan sedangkan kemampuan pemeriksaan sebagai dasar seseorang untuk mengevaluasi performa suatu sistem dan juga mencari kesalahan (trouble-shooting) yang terjadi pada sistem.
Persiapan Pengendali Elektronika Daya
Dalam mempersiapkan pengendali elektronika daya, ada beberapa hal yang harus Anda lakukan, di antaranya memahami spesifikasi alat, dan mengetahui kondisi alat.
1.  Spesifikasi alat
Setiap alat pasti dilengkapi dengan spesifikasi kerja alat yang memberitahukan kepada para pengguna alat tentang kondisi-kondisi kerjanya sehingga dapat digunakan sebagai dasar pertimbangan penggunaan alat dan kondisi kerjanya. Spesifikasi kerja yang sangat penting dari pengendali elektronika daya, minimal harus meliputi: jenis (penyearah, tak terkendali, terkendali, regulator ac, dan lain-lain), tegangan masukan, tegangan dan daya keluaran alat. Sebagai contoh: penyearah fasa tiga tidak terkendali mempunyai tegangan masukan fasa tiga 380 V ac, tegangan keluaran 400 V dan daya keluaran 5 kW. Ini memberitahu kita bahwa alat ini bila diberi sumber fasatiga 380 V, akan memberikan tegangan keluaran 400 V dc dan daya nominal 5 kW.
Contoh lain misalnya, alat pengatur ac (ac regulator) fasa tunggal mempunyai spesifikasi sebagai berikut:
tegangan masukan 220 V, 50 Hz,
tegangan keluaran 0-220 V ac dan daya nominal 1 kW. Ini menunjukkan kepada kita bahwa alat tersebut kalau diberi tegangan masukan 220 V akan memberikan tegangan keluaran yang bisa diatur mulai dari nol (0) sampai dengan 220 V ac dengan daya sampai dengan 1 kW.
2. Pengecekan fungsi alat
Setelah diketahui spesifikasi alat, langkah berikutnya adalah pemeriksaanfungsi alat. Pemeriksaan fungsi ini dilakukan dengan melakukan pengukuran pada tegangan keluarannya setelah alat dihubungkan ke sumbernya. Sebagai contoh seperti untuk alat penyearah. Setelah dihubungkan ke sumber tegangan, tegangan keluaran bisa diukur dengan voltmeter. Bila tegangan keluarannya 400 V dc maka alat dapat dikatakan berfungsi dengan baik. 
Pengoperasian pengendali elektronika daya
Setelah dilakukan persiapan seperti yang telah dijelaskan di atas, kita sampai pada tahap pengoperasian. Agar dapat mengoperasikan alat, kita harus telah memiliki pemahaman tentang prinsip kerja alat yang akan dioperasikan dan memahami petunjuk operasi alat.
1. Pemahaman prinsip kerja alat
Pemahaman terhadap prinsip kerja alat yang akan dioperasikan merupakan modal utama dalam pengoperasiannya. Dengan mengetahui prinsip kerja alat, kita telah mempunyai bayangan tentang apa yang akan terjadi di dalam alat bila kita mengoperasikannya. Ini juga akan sangat membantu dalam pengoperasian alat secara aman dan optimal.
2.  Pemahaman petunjuk operasi alat Setiap alat selalu memiliki petunjuk operasi yang dibuat oleh pabrik pembuatnya. Walaupun kita sudah mempunyai pengetahuan yang memadai tentang alat tersebut, kita tetap harus mempelajari pentunjuk operasi alat tersebut. Petunjuk operasi ini disusun oleh pabrik pembuat alat berdasarkan pengetahuan dan pengalaman yang dimilikinya, baik yang terkait aspek keamanan alat dan keselamatan manusia.  Indikator kompetensi seseorang dalam mengoperasikan alat adalah berdasarkan petunjuk operasi alat. Petunjuk operasi dari pabrik bisa dimodifikasi atau disederhanakan sesuai dengan kebutuhan.
3. Pemahaman terhadap operasi alat yang dikendalikan
Sebagai contoh, suatu pengatur listrik  ac fasa satu aka digunakan untuk mengoperasikan motor induksi fasa satu. Sebagaimana yang telah diketahui bahwa arus asut motor (starting current) beberapa kali lipat arus nominalnya. Oleh karena itu, dalam pengendalian motor ini kita tidak boleh memulai dengan tegangan nominalnya, namun perlu dilakukan pengaturan tegangan secara bertahap melalui knob pengatur yang ada pada pengendali elektronika daya, yang dalam hal ini adalah dengan mengatur sudut penyalaan thyristor atau triac, misalnya. Jadi, di samping operasi alat kendalinya, pemahaman terhadap beban yang akan dikendalikan juga penting untuk menghindari kondisi yang membahayakan baik bagi alat pengendalinya maupun alat yang dikendalikannya.
Pemeriksaan pengendali elektronika daya
Untuk mengetahui kebenaran kerja dari penyearah ini perlu dilakukan pemeriksaan sebagai berikut:
1. Periksalah tegangan keluaran dengan menggunakan voltmeter  dc/ac. Bila tegangan keluaran sesuai dengan tegangan yang dikehendaki berarti rangkaian bekerja dengan baik seperti yang telah dijelaskan pada tahap persiapan pada bagian pengecekan fungsi alat. Namun bila tidak maka perlu pemeriksaan lebih lanjut pada rangkaian dan komponen-komponennya.
2. Pemeriksaan lebih akurat dapat dilakukan dengan menggunakan osiloskop pada tegangan keluaran (perhatikan cara pemakaian osiloskop). Jika tegangan keluaran tidak sesuai dengan yang seharusnya (biasanya lebih rendah), perlu dilakukan pada rangkaian. Atau bila dilakukan dengan osiloskop maka akan dapat diketahui bentuk gelombang tegangan keluaran. Atas dasar bentuk gelombang keluaran ini dapat diketahui bagian mana yang tidak bekerja dengan baik. Untuk dapat menganalisis secara cermat terhadap permasalahan ini perlu pemahaman terhadap konsep pengendali elektronika daya.
3. Bila sudah diketahui permasalahan baru diidentifikasi permasalahanpermasalahan yang ada pada rangkaian. Permasalahanpermasalahan yang sering terjadi adalah sebagai berikut:
1. Jumlah pulsa atau gelombang keluaran tidak lengkap. Bila kita menjumpai hal seperti ini, maka perlu diperiksa: sumber tegangan masukan, sekering pengaman rangkaian/komponen, kabel-kabel dan koneksinya, komponen elektronika daya seperti dioda thyristor, atau lainnya, dan pengendali yang memiliki rangkaian penyulut  (rangkaian trigger) perlu diperiksa rangkaian triggernya. Pemeriksaan rangkaian trigger memerlukan pengetahuan tentang rangkaian trigger dan sistem pembangkitan pulsa triggernya. Bila salah satu komponen ini tidak dalam keadaan baik, sudah dapat dipastikan bahwa rangkaian tidak akan bekerja dengan baik.
2. Panas pada bagian-bagian rangkaian. Suhu panas yang berlebihan identik dengan ketidaknormalan kerja rangkaian. Panas ini bisa akibat dari longgarnya sambungan, arus lebih, atau sistem pendinginannya yang tidak memadai. Longgarnya sambungan menimbulkan efek pengelasan pada terminalterminal sambungannya sehingga menimbulkan efek panas yang berlebih. Bila ini berjalan dalam waktu lama bisa membahayakan komponenkomponen Semikonduktornya dan bahkan bisa menimbulkan bahaya kebakaran. Panas akibat arus beban lebih ini bisa diakibatkan oleh permasalahan pada beban dan bisa juga akibat dari kapasitas daya alat yang lebih rendah dari yang diserap oleh beban. Namun bila alat pengamannya sesuai dengan kemampuan alat seharusnya hal ini sudah dapat diatasi melalui pemutusan alat pengaman. Sistem pendinginan sangat berperan pada performa kerja alat. Sistem pendinginan bisa berupa heatsink dan atau fan. Heatsink biasanya dipilih berdasarkan kapasitas komponen semikonduktor yang digunakan. Oleh karena itu permasalahan terbesarnya adalah pada faktor rekatannya dengan komponen semikonduktornya. Untuk pendinginan yang menggunakan fan dapat dengan mudah diketahui bekerja tidaknya.
3. Thyristor tidak dapat dikendalikan. Bila menjumpai unit pengendali elektronika daya, ketika dihidupkan, tegangan keluarannya langsung tinggi, maka perlu diperiksa pulsa trigger dan rangkaian snubbernya. Pengaturan pulsa trigger langsung pada sudut penyalaan nol akan menyebabkan tegangan keluaran angsung tinggi. Permasalahan ini bisa terjadi akibat kegagalan pada rangkaian triggernya (lihat Gambar 4.48). Rangkaian snubber (Gambar 4.31) digunakan untuk membatasi agar tingkat kenaikan tegangan awal dv/dt rangkaian tidak melampaui dv/dt thyristor. Jika dv/dt komponen terlampaui maka thyristor akan langsung “on” dan tidak bisa dikendalikan lagi. Rusaknya rangkaian snubber biasanya adalah karena umur. Biasanya ditandai dengan pecahnya kapasitornya.
Demikianlah persiapan yang perlu dilakukan sebelum, pengoperasian pengendali elektronika daya. Pengoperasian perlu mengikuti petunjuk operasi alat dan bila terjadi ketidaknormalan kerja alat bisa dilakukan pemeriksaan terhadap fungsi komponen-komponen rangkaian pengendali elektronika daya.
Sumber :
Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 2 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 327 – 330.

BAGIAN-BAGIAN KONTAKTOR MAGNET

1.Kontaktor Magnet dengan Timer

Untuk memenuhi diskripsi kerja dari suatu rangkaian terprogram (misal untuk mengendalikan beberapa motor dengan waktu kerja yang berbeda / berurutan), maka diperlukan alat penunda waktu kerja kontak (timer) yang bekerja sama dengan kontaktor magnit. Dari gambar di samping dari atas ke bawah berturut-turut adalah :

1. kontaktor magnit dengan waktu tunda hidup (on delay)
2. kontaktor magnit dengan waktu tunda mati (off delay)
3. kontaktor magnit dengan waktu tunda kombinasi hidup-mati
4. kontaktor magnit dengan waktu tunda hidup-mati kontinyu
4.3.3.1 Kontaktor Magnit dengan Waktu Tunda Hidup (On Delay)
Dari gambar di samping, timer on delay diset pada tva, sehingga bila kontaktor magnit aktif, kontak bantu NO-nya akan merespon (bergerak ke kanan / terminal 7 – 8 akan sambung) setelah waktu tva, dan akan lepas bila kontaktor magnit tidak bekerja. Untuk mudah mengingat, perhatikan pada tanda ” ( ” seperti payung. Bila tuas bergerak ke kanan, payung akan menahan / menunda gerakan tersebut.
4.3.3.2 Kontaktor Magnit dengan Waktu Tunda Mati (Off Delay)
Timer off delay diset pada tvr. Bila kontaktor magnit aktif, maka kontak bantu NO langsung aktif juga (terminal 7 – 8 sambung). Selanjutnya bila kontaktor magnit tidak aktif, kontak bantu NO tetap aktif sampai waktu tvr (waktu tvr adalah waktu tunda dari kontaktor magnit tidak aktif sampai dengan kontak bantu NO lepas).
Perhatikan dalam gambar saat tuas bergerak ke kiri terlihat adanya payung ” ) ”.
4.3.3.3 Kontaktor Magnit dengan Waktu Tunda Kombinasi Hidup-Mati
Bila timer on delay diset pada tva dan timer off delay diset pada tvr, maka kontak bantu NO akan aktif setelah waktu tva dari mulainya kontaktor magnit aktif. Dan akan lepas setelah waktu tvr dari tidak aktifnya kontaktor magnit. Perhatikan pada gambar, gerakan tuas ke kanan maupun ke kiri akan tertahan dengan adanya tanda payung ” ( ” dan ” ) ”.
4.3.3.4 Kontaktor Magnit dengan Waktu Tunda Hidup-Mati Kontinyu
Pada timer ini dapat diatur di frekuensi tertentu, misalnya 1 Hz. Bila kontaktor magnit aktif, maka kontak bantu NO akan langsung aktif sambung-lepas / hidup-mati secara periodik / kontinyu sampai dengan kontaktor magnit tidak aktif.
Sumber :
Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 2 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 335 – 336.

2.Kontak Utama dan Kontak Bantu

Berdasarkan fungsinya, kontak-kontak pada kontaktor magnit ada 2 macam, yaitu kontak utama dan kontak bantu.
Kontak Utama :
Konstruksi kontak-kontaknya dimensinya lebih luas dan tebal, sehingga mampu dialiri arus listrik yang relatif besar (arus beban). Terminal keluarnya yang ke beban (2, 4, dan 6) bisa disambungkan ke rele pengaman arus lebih (Thermal Overload Relay).

Kontak Bantu :

Konstruksi kontak-kontaknya berdimensi lebih sempit dan tipis, karena arus yang melaluinya relatif kecil (arus untuk rangkaian kontrol). Penulisan terminal kontakkontak bantu pada kontaktor magnit ditulis dengan angka dan digit, yaitu untuk kontak-kontak NC, digit kedua dari terminal-terminalnya dengan angka 1 dan 2 untuk kontak-kontak NO, digit kedua dari terminal-terminalnya dengan angka 3 dan 4. Sedangkan kontak-kontak bantu untuk fungsi tertentu (misal dengan timer), kontakkontak NC, digit kedua dengan angka 5 – 6. dan untuk kontak-kontak NC nya, digit kedua dengan angka 7 – 8. Penulisan kontak bantu NC maupun NO sebagai berikut :
- Untuk kontak bantu biasa
NC .1 – .2
NO .3 – .4
- Untuk kontak bantu dengan fungsi tertentu
NC .5 – .6
NO .7 – .8
Sumber :
Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 2 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 334.

3. Kontaktor Magnet

Kontaktor merupakan saklar daya yang bekerja berdasarkan kemagnitan. Bila koil (kumparan  magnit) dialiri arus listrik, maka inti magnit menjadi jangkar, sekaligus menarik kontak-kontak yang bergerak, sehingga kontak NO (normally open) menjadi sambung, dan kontak NC (normally close) menjadi lepas. Gambar di samping adalah kontaktor magnit arus bolakbalik, pada inti magnit dipasang cincin hubung singkat dengan tujuan agar jangkar saat ditarik inti magnit tidak bergetar yang menimbulkan bunyi dengung (karena pada arus bolak-balik frekuensi 50 Hz, berarti dalam 1 detik inti magnit menarik dan mele-pas jangkar sebanyak 50 periode, sehingga menimbulkan getaran).

Simbol koil konduktor magnit seperti pada gambar di samping dengan terminal kumparan A1 dan A2 yang disambungkan pada rangkaian kontrol. Sedangkan pada bagian sebelah kanan adalah kontak-kontak sebagai saklar daya yang berfungsi untuk mengalirkan arus beban yang relatif besar. Terminal 1, 3, dan 5 disambungkan ke sumber jaringan 3 fasa dan terminal 2, 4, dan 6 disambungkan ke beban (motor).
Sumber :
Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 2 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 333.


Pneumatic Basic

4.4.2.1 Bagian Pensuplai
 Kompresor
Simbol :
Fungsi: Fungsi kompresor adalah untuk mensuplai udara bertekanan ke sistem kontrol pneumatik.

4.4.2.2 Bagian Aktuator (Penggerak)
a. Aktuator Linier
1. Silinder
Fungsi: Untuk mengubah tekanan udara menjadi gerakan translasi dari batang piston.
Jenis Silinder
a. Single Acting Cylinder (SAC)
Gerakan keluar dari batang piston dilakukan oleh udara bertekanan, sedangkan gerakan balik dilakukan oleh pegas.
b. Double Acting Cylinder (DAC)
Gerakan keluar maupun gerakan balik dari batang piston dilakukan oleh udara bertekanan.
Simbol:
Single Acting Cylinder (SAC)
Prinsip kerja:
Pada kondisi normal posisi silinder seperti pada gambar di bawah ini, yaitu batang piston selalu berada pada posisi “0” karena adanya gaya dorong dari pegas.
Apabila udara bertekanan dimasukkan ke lubang P maka gaya tekan udara akan mengalahkan gaya dorong pegas sehingga batang piston akan bergerak dari posisi “0” ke posisi “1” seperti gambar berikut ini
Apabila aliran udara bertekanan pada lubang P dihentikan maka posisi silinder kembali seperti gambar a karena mendapat gaya dorong dari pegas.
Simbol:
Double Acting Cylinder (DAC)
Prinsip kerja:
Kondisi normal silinder, batang piston bias terletak pada posisi “0” seperti gambar berikut (Gambar atas) atau terletak pada posisi “1” (Gambar bawah).
Apabila udara bertekanan dimasukkan ke lubang P maka piston akan bergerak dari posisi “0” ke posisi “1” jika dalam keadaan normal piston berada pada posisi “0” (Gambar c). Sedangkan apabila udara bertekanan dimasukkan ke lubang P’ maka piston akan bergerak dari posisi “1” ke posisi “0” apabila dalam keadaan normal piston berada pada posisi “1” (Gambar d).
 Aktuator rotasi
Fungsi : Untuk mengubah tekanan udara menjadi gerakan rotasi dari poros aktuator.
Simbol :
Prinsip kerja :
Aktuator rotasi (rotational actuator) pada hakekatnya adalah sama seperti turbin yang terdiri dari tiga komponen utama yaitu casing, blade (sudu) dan poros. Apabila udara bertekanan dialirkan ke lubang P maka udara akan mendorong sudu-sudu yang menempel pada poros sehingga poros akan berputar dan udara buangan akan keluar melalui lubang R.
4.4.2.3 Simbol-simbol untuk sambungan
A, B, C : Garis kerja P : Persediaan udara, hubungan dengan udara kompresi
(udara yang dimampatkan) R, S, T : Saluran, titik pembuangan L : Garis kebocoran Z, Y, X : Garis-garis pengontrol
4.4.2.4 Katup
Katup digambarkan dengan segi empat, banyaknya segi empat menentukan banyaknya posisi yang dimiliki oleh sebuah katup.
Penamaan katup ditentukan berdasarkan banyaknya lubang pada salah satu posisi per banyaknya posisi dalam setiap lubang juga posisi awal dari katup. Posisi normal katup selalu berada pada posisi sebelah kanan, sehingga simbol-simbol sambungan selalu diletakkan pada kotak sebelah kanan.
Katup di atas mempunyai dua lubang yaitu lubang P dan lubang A dimana lubang P adalah tempat masuknya udara bertekanan ke dalam katup sedangkan lubang A adalah lubang keluaran udara dari dalam katup, dan katup tersebut mempunyai 2 posisi yaitu posisi tertutup (kotak sebelah kanan) dan posisi terbuka (kotak sebelah kiri) sedangkan pada posisi normal katup tersebut berada pada posisi tertutup (Kotak sebelah kanan alirannya tertutup).
Katup di atas mempunyai dua lubang yaitu lubang P dan lubang A dimana lubang P adalah tempat masuknya udara bertekanan ke dalam katup. Lubang A adalah lubang keluaran udara dari dalam katup, dan katup tersebut mempunyai 2 posisi yaitu posisi terbuka (kotak sebelah kanan) dan posisi tertutup (kotak sebelah kiri). Pada posisi normal katup tersebut berada pada posisi terbuka (terdapat anak panah dari P ke A menandakan aliran terbuka).
4.4.2.5 Katup pengontrol arah
(directional control valve)

Katup di atas mempunyai tiga lubang yaitu lubang P, lubang A dan lubang R dimana lubang P adalah tempat masuknya udara bertekanan ke dalam katup sedangkan lubang A adalah lubang keluaran udara dari dalam katup yang akan dihubungkan ke komponen berikutnya dan Lubang R adalah lubang pembuangan udara ke atmosfir. Katup tersebut mempunyai 2 posisi yaitu posisi tertutup (kotak sebelah kanan) dan posisi terbuka (kotak sebelah kiri) sedangkan pada posisi normal katup tersebut berada pada posisi tertutup (karena aliran udara dari lubang P ke lubang A ditutup) sedangkan lubang A tersambung ke lubang pembuangan (R) artinya udara yang telah melakukan kerja dibuang melalui lubang A ke lubang R.
4.4.2.6 Katup Pengontrol Aliran

Katup di atas berfungsi untuk membatasi laju aliran fluida yang masuk ke dalam silinder sehingga gerakan piston dalam silinder bisa diperlambat.
Katup di atas berfungsi untuk membatasi atau mengontrol laju aliran fluida tetapi hanya satu arah saja, aliran dari lubang A ke lubang B bisa dikontrol sedang aliran sebaliknya dari lubang B ke lubang A tidak bisa dikontrol.
Katup di atas berfungsi untuk membatasi tekanan dengan cara mengatur laju udara pembuangan.
Katup di atas berfungsi untuk membatasi tekanan dengan cara mengatur laju udara yang mengalir ke system pneumatik.
4.4.2.7 Katup-katup yang tidak dapat dibalik.

Katup di atas berfungsi untuk menyearahkan aliran, udara bertekanan hanya bisa mengalir dari lubang A ke lubang B tapi sebaliknya aliran dari lubang B ke lubang A terhambat. Fungsi dari katup mirip dengan fungsi diode pada peralatan elektronika yaitu menyearahkan arus
Katup diatas berfungsi sebagai gerbang OR sama seperti gerbang OR pada komponen elektronika digital yang cara kerjanya bisa disimpulkan pada table kebenaran seperti berikut :
Katup di atas berfungsi sebagai gerbang AND sama seperti gerbang AND pada komponen elektronika digital yang cara kerjanya bisa disimpulkan pada table kebenaran seperti berikut:
Fungsi katup ini sama dengan katup searah kelebihannya adalah ketika ada aliran balik aliran tersebut akan dibuang lewat lubang pembuangan R.
4.4.2.8 Mekanisme Pengontrol
Dengan penggerak tangan
 Penggerak mekanis
Contoh Pemakaian :
Perhatikan gambar diatas pada kondisi normal (katup “a” maupun katup “b”) belum diberikan aktuasi, piston berada  pada posisi “0” karena udara bertekanan (garis tebal) dari kompresor (P) yang menuju katup “a” dan katup “b” alirannya tertutup oleh katup 3/2 Normally Close (katup “a” dan katup “b”), udara bertekanan mengalir ke silindaer pneumatic melalui katup 4/2 yang posisinya sedang mengalirkan udara lubang sebelah kanan yang memposisikan piston berada pada posisi “1”.
Ketika katup “a” (ditandai dengan anak panah) diaktuasi maka katup tersebut akan terbuka sehingga mengalirkan udara bertekanan yang akan merubah posisi katup 4/2 ke posisi sebelah kiri sehingga udara bertekanan dari kompresor mengalir ke sisi kiri dari katup 4/2 dan keluar dari lubang A yang menyebabkan piston bergerak ke posisi “1”. Sedangkan udara yang terdapat pada sisi kanan silinder akan dibuang melalui lubang pembuangan katup 4/2 (lubang R).
Ketika katup “b” (dan katup “a” dibiarkan bebas) di aktuasi maka katup tersebut akan terbuka sehingga mengalirkan udara bertekanan yang akan merubah posisi katup 4/2 ke posisi sebelah kanan sehingga udara bertekanan dari kompresor mengalir ke sisi kiri dari katup 4/2 dan keluar dari lubang B yang menyebabkan piston bergerak ke posisi “0”. Sedangkan udara yang terdapat pada sisi kiri silinder akan dibuang melalui lubang pembuangan katup 4/2 (lubang R)
Sumber :
Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 2 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 343 – 349.

Sistem Pengendali Mekanik dan Magnetik (Elektromagnetik)

Dalam sistem pengendali elektromagnetik ada dua diagram gambar yang sering digunakan, yaitu diagram kontrol dan diagram daya. Yang termasuk diagram kontrol antara lain :

- Pengaman arus kontaktor magnit : sekering / MCB (kecil).
- Tombol tekan stop.
- Tombol tekan start : tombol kunci start, dll.
- Koil konduktor magnit.
- Kontak-kontak bantu kontaktor magnit NO, NC.
- Kontak-kontak bantu timer NO, NC.
- Kontak-kontak bantu TOR.
- Lampu tanda.
Arus yang mengalir pada rangkaian ini relatif kecil, karena beban listrik pada rangkaian ini adalah koil kontaktor magnit saja. Sedangkan yang termasuk diagram daya antara lain :
- Pengaman arus beban : sekering / MCB.
- Kontak-kontak utama kontaktor magnit.
- Kontak-kontak pengaman arus lebih (TOR).
- Terminal-terminal transformator.
- Terminal-terminal resistor.
- Terminal-terminal induktor.
- Terminal-terminal kapasitor kompensasi.
- Terminal-terminal belitan motor / beban lainnya.
Selanjutnya secara berturut-turut diuraikan pengoperasian sistem pengendali elektromagnetik dengan diagram kontrol dan diagram daya pada kendali motor masing-masing sebagai berikut :
1. Diagram kontrol dan diagram daya Pengendali motor langsung (Direct on line)
2. Diagram kontrol dan diagram daya Pengendali motor langsung dengan TOR
3. Diagram kontrol dan diagram daya Pengendali motor putar kanan-kiri
4. Diagram kontrol dan diagram daya pengendali starter motor dengan pengasutan Y – ????
5. Diagram kontrol dan diagram daya Pengendali starter motor dengan pengasutan autotrafo
6. Diagram kontrol dan diagram daya Pengendali starter motor rotor lilit dengan pengasutan resistor
7. Diagram kontrol dan diagram daya pengendali motor dua kecepatan
8. Diagram kontrol dan diagram daya Pengendali motor Dahlander
4.3.5.1 Pengendali motor langsung (Direct on line)
Pengendali DOL digunakan untuk motor-motor berkapasitas kecil (dibawah 4 kVA). Untuk mengoperasikan motor, cukup sederhana, yaitu dengan memutar saklar putar S1 ke posisi “on”, sehingga ada arus listrik pada “coil” K1 dan kontaktor menghubungkan jaringan dengan motor.
Motor berputar disertai kontak K1 menyambung, sehingga lampu tanda H1 menyala. Bila pada rangkaian motor terjadi hubung singkat, maka sekering F7 akan putus, sehingga motor berhenti. Sedangkan dalam kondisi normal, untuk menghentikan motor dengan memutar saklar S1 ke posisi “off”. Untuk memelihara pengendali motor ini, rangkaian pengendalinya dikelilingi panel, sehinggga bebas dari debu ataupun percikan air. Secara berkala yang perlu dilakukan untuk pemeliharaan antara lain semua sambungan pada terminal jangan sampai ada yang kendor, dan juga permukaan kontaktor dijaga tetap bersih dengan menyemprotkan “contact cleaner”.
4.3.5.2 Pengendali Motor Langsung Dengan TOR
Pengendali motor ini hampir sama dengan Pengendali Motor Langsung (DOL), hanya yang membedakan adalah adanya tambahan pengaman arus lebih TOR (Thermal Overload Relay). Jadi pengaman arusnya ada dua yaitu pengaman arus lebih oleh TOR dan pengaman arus hubung singkat oleh F7. Rangkaian TOR disambungkan secara seri pada saklar magnit. Bila ada arus lebih, maka bimetal TOR menjadi panas dan melengkung, sehingga kontak NC F1 dan aliran arus listrik coil magnit terputus. Dengan demikian kontak saklar magnit lepas dan motor berhenti.
4.3.5.3 Pengendali Motor Putar Kanan-Kiri
Bila saklar S1 ditekan, maka coil k1 aktif karena adanya aliran arus ke coil. Saklar magnit bekerja dan putaran motor kearah kanan. Untuk menghentikan motor ada dua, yaitu kemungkinan pertama adanya gangguan / arus lebih sehingga F1 lepas dan k1 trip, atau memang sengaja dihentikan dengan menekan tombol SO. Arah putaran motor berbalik menjadi kearah kiri jika tombol S2 ditekan. Pembalik arah putaran ini dikendalikan oleh 2 saklar magnit. Saklar magnit K1 menghubungkan L1 – U ; L2 – V ; L3 – W, sehingga motor berputar ke kanan. Sedangkan saklar magnit K2 menghubungkan L1 – W ; L2 – V ; L3 – U, sehingga motor bergerak ke kiri.
Untuk mengantisipasi kejadian hubung singkat pada rangkaian pengendali, maka saat S1 ditekan (sambung), maka rangkaian yang ke K2 terputus akibat kontak NC dari S1 yang dihubung seri kondisi lepas. Demikian juga sebaliknya, saat S2 ditekan, kontak NC  yang disambung seri pada K1 akan lepas. Pengendali motor ini diproteksi pengaman arus hubung singkat F9 dan pengaman arus lebih TOR F1.
4.3.5.4 Pengendali Starter Motor Dengan Pengasutan Y – ????
Pada motor-motor yang berdaya besar (khususnya lebih besar dari 4kVA), untuk mengurangi kejutan pada saat start, salah satu peredamnya dengan menggunakan kendali Y – ????. Saklar magnit k1M berfungsi untuk menghubungkan L1 – V ; L2 – V ; L3 – W, (dengan kondisi putaran motor ke kanan jika k2M / k3M bekerja) atau menghubungkan L1 – V1 ; L2 – V1 ; L3 – W3 (dengan kondisi putar motor ke kiri jika k2M / k3M bekerja). K1M dikopel dengan timer K1T yang bias diset satuan waktu (missal 7 detik). Saklar magnit k2M berfungsi untuk hubung bintang / Y yaitu  menghubungkan U2 – V2 – V3 sebagai titik bintang. Sedangkan k2M berfungsi untuk menghubungkan U2 – W1 ; V2 – U1 ; dan W2 – V1. Saat S1 ditekan, maka yang bekerja k1M dan k3M (hubung Y) dan lampu tanda H1 menyala. Setelah 7 detik k1T bekerja sehingga k2M bekerja (hubung ????) dan k3M lepas karena kontak NC k1T setelah 7 detik lepas dan memutus rangkaian k3M. Untuk mengantisipasi agar k2M dan k3M tidak bekerja bersamaan, maka di kontak NC k3M dirangkaikan seri k2M dan kontak NC k2M dirangkaikan seri dengan k3M.
4.3.5.5 Pengendali Starter Motor Rotor Lilit Dengan Pengasutan Resistor
Untuk mengendalikannya diperlukan 4 buah saklar magnit. Saklar magnit K1M berfungsi untuk menghubungkan jaringan ke belitan stator yaitu L1 – U ; L2 – V ; L3 – W. Dalam gambar ini resistor yang digunakan ada 4 tahap. Saklar magnit k2M/k3M/k4M masing-masing berfungsi untuk mengatur arus rotor dari k1M secara bertahap. Pengaturan kontaknya masing-masing dengan timer yaitu kerja k4M diatur oleh timer k1T, saklar magnit k3M oleh oleh k4T dan saklar magnit k2M diatur oleh k3T. jika masing-masing timer diatur bekerja dengan tanda waktu 7 detik, maka setelah S1 ditekan (posisi on) motor langsung bekerja dengan putaran lambat dan ada arus minimum pada rotor (k1M).
Setelah 7 detik, saklar magnit k4M bekerja karena kontak NO k1T sambung. Demikian seterusnya setelah 7 detik, k3M bekerja setelah kontak NO k4T sambung, k2M bekerja setelah kontak NO k3T sambung. Saat yang terakhir ini kondisi arus rotor dalam keadaan hubung singkat dan motor bekerja normal. Motor ini dapat berhenti secara otomatis bila terjadi arus lebih akibat kerja dari TOR atau terjadi hubung singkat, sehingga sekering F7 putus. Untuk menghentikan secara manual dengan menekan tombol SO.
Sumber :
Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 2 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 337 – 342.

Sabtu, 26 Maret 2011

Mau Tau Pemimpin Muda yang Ideal

Pemimpin Muda Bangsa bukan sekedar menjadi Orang berprestasi, apalagi orang biasa. Pemimpin Muda Bangsa telah memilih jalan terjal yang teramat mendaki. 
Pemimpin Muda Bangsa adalah seseorang yang sedikitnya lima kali sepekan meninggalkan pembaringan yang nyaman di keheningan sepertiga malam terakhir untuk meletakkan keningnya di atas sajadah, bercengkrama dengan Allah Yang Maha Indah lewat raka’at-raka’at shalat tahajudnya. 
Pemimpin Muda Bangsa adalah seseorang yang setiap hari bergegas ke Masjid di pekatnya kegelapan dini hari agar dapat berada di shaf terdepan shalat shubuh berjamaah dan bermunajat penuh khusyu kepada Allah di waktu dhuha. 
Pemimpin Muda Bangsa tidak akan membiarkan satu haripun berlalu tanpa melantunkan paling tidak satu juz Al Qur-an dan wirid matsurat. 
Pemimpin Muda Bangsa juga memastikan paling tidak dua hari dalam sepekan ia ber-taqarrub kepada Allah lewat shaum sunnahnya, di samping mengikis kecintaan yang berlebihan terhadap harta dengan tiada melewatkan satu haripun tanpa infaq. 
Pemimpin Muda Bangsa juga menjaga disiplinnya setiap hari, dan menjamin kesamaptaan fisiknya lewat olahraga dan beladiri. 
Pemimpin Muda Bangsa membina diri tak kenal henti untuk menjadi pemimpin-pemimpin masa depan yang memiliki pemahaman Islam yang komprehensif, integritas dan kredibilitas yang tinggi, berkepribadian matang, moderat, serta peduli terhadap kehidupan bangsa dan negara.
Kajian Islam Kontemporer, Training Pengembangan Diri, Kajian Islam Pekanan, Training Jurnalistik, Studi Pustaka, Dialog Tokoh, Diskusi Paska Kampus, Training Bahasa Inggris, adalah sebagian racikan menu wajib untuk mentransformasi diri, mewujudkan visi besar itu. Namun itu belumlah cukup. 
Pada saat yang sama, Pemimpin Muda Bangsa dituntut untuk meraih indeks prestasi yang tertinggi, menjadi aktifis dakwah, memimpin berbagai organisasi  dan kemasyarakatan, menjuarai berbagai kompetisi, menuangkan pemikiran yang tajam dan cemerlang lewat tulisan-tulisan di berbagai media, dan menyiapkan diri untuk memenangkan tantangan kehidupan di lingkungan masyarakat.
Ehm……teringat seorang muslimah bernama Aisyah dalam syair lagu Bimbo yang ditulis oleh Taufiq Ismail. “Aisyah adinda kita yang sopan dan jelita. Indeks prestasi tertinggi tiga tahun lamanya. Calon insinyur(scientist, baca, hehehehe) dan bintang di kampus … Aisyah adinda kita tidak banyak berkata. Aisyah adinda kita, hanya memberi contoh saja.” Sungguh suatu gambaran pasangan hidup ideal yang mungkin ada di benak mayoritas Pemimpin Muda Bangsa. Namun, Allah Maha Adil. Sebelum Dia berkenan menyandingkan Pemimpin Muda Bangsa dengan seorang “Aisyah” Anda mesti membuktikan dulu kualitas yang paling tidak setara dengannya.
***
Sampai disini mari kita merefleksikan diri kita. Saya menyadari dengan sangat, bahwa saya pun belum menjadi seorang pemimpin muda yang ideal seperti yang telah disebutkan diatas. Agoh, terlalu cepat kita untuk menutup mata. Coba kita baca sekali lagi, sekali lagi, dan terus membacanya hingga membisik kedalam pikiran serta merasuk kedalam hati.
Kita punya waktu yang sama 24 jam sehari. Coba kita mengingat-ingat kembali apa yang kita lakukan hari ini. Berapa lama waktu yang kita habiskan untuk tidur? 
Berapa lama waktu yang kita habiskan untuk berselancar internet? 
Berapa lama waktu yang kita habiskan untuk berjalan-jalan? 
Sudahkah hal tadi kita seimbangkan dengan berapa lama waktu yang kita habiskan untuk membaca? 
Berapa lama waktu yang kita habiskan untuk menuangkan ide-ide didalam pemikiran kedalam sebuah tulisan dan gerak yang nyata? 
Berapa lama waktu yang kita habiskan untuk meningkatkan kapasitas kita sebagai seorang manusia yang bersyukur hingga kita bisa menyandang kembali sebagai umat terbaik?
Belum terlambat. Saya katakan kembali, semua belum terlambat. “Man Jadda Wa Jada”, selama masih ada api semangat dan kesungguhan didalam jiwa kita, kita pasti akan bisa meraihnya. Kisah Abraham Lincoln, Muhammad Yunus dan Mahatma Gandhi rasanya sudah cukup memberikan sebuah jerat hikmah, bahwa keberhasilan tidak berdasar pada tolok waktu alih-alih sebuah kesungguhan. Oleh karenanya, jangan pernah menyerah untuk menjadi sesosok pemimpin muda yang (mendekati) ideal. Karena umat ini telah lelah menunggu barisan pemuda/remaja umat Islam yang tak pernah rapi.

Rabu, 23 Maret 2011

SISTEM PENANGKAL PETIR


PENDAHULUAN
Petir terjadi karena ada perbedaan potensial antara awan dan bumi atau dengan awan lainnya. Proses terjadinya muatan pada awan karena dia bergerak terus menerus secara teratur, dan selama pergerakannya dia akan berinteraksi dengan awan lainnya sehingga muatan negatif akan berkumpul pada salah satu sisi (atas atau bawah), sedangkan muatan positif berkumpul pada sisi sebaliknya. Jika perbedaan potensial antara awan dan bumi cukup besar, maka akan terjadi pembuangan muatan negatif (elektron) dari awan ke bumi atau sebaliknya untuk mencapai kesetimbangan. Pada proses pembuangan muatan ini, media yang dilalui elektron adalah udara. Pada saat elektron mampu menembus ambang batas isolasi udara inilah terjadi ledakan suara. Petir lebih sering terjadi pada musim hujan karena pada keadaan tersebut udara mengandung kadar air yang lebih tinggi sehingga daya isolasinya turun dan arus lebih mudah mengalir. Karena ada awan bermuatan negatif dan awan bermuatan positif, maka petir juga bisa terjadi antar awan yang berbeda muatan.
Indonesia terletak pada daerah tropik memiliki tingkat resiko kerusakan akibat petir yang cukup tinggi dibandingkan daerah subtropik. Wilayah Indonesia memiliki hari guruh atau IKL (Isocronic Level) antara 100-200 hari pertahun sehingga termasuk wilayah dengan kategori kejadian petir yang sangat tinggi. Bahkan daerah Cibinong sempat tercatat pada Guiness Book of Record tahun 1988, karena mengalami 322 kejadian petir per tahun. Kerapatan petir di Indonesia juga sangat besar yaitu 12/km2/tahun yang berarti setiap luas area 1 km2 berpotensi menerima sambaran petir sebanyak 12 kali setiap tahunnya. Energi yang dihasilkan oleh satu sambaran petir mencapai 55 kilo watt jam.


TUJUAN
Tujuan utama dari sistem penangkal petir adalah memberikan perlindungan terhadap manusia, asset dan peralatan terhadap kerusakan yang yang disebabkan oleh petir baik sambaran petir langsung maupun tidak langsung. Efek sambaran langsung dapat mengakibatkan terjadinya kematian pada makhluk hidup, kebakaran dan ledakan bila menyambar struktur yang tidak terlindungi. Sedangkan sambaran tidak langsung yang melalui surge dan transient merupakan ancaman bagi sitem komputerisasi dan komunikasi.
Sejak dulu, manusia telah berusaha mengembangkan metode untuk menangkal bahaya sambaran petir salah satunya dengan teknologi penangkal petir. Penangkal petir adalah rangkaian jalur yang difungsikan sebagai jalan bagi petir menuju ke permukaan bumi, tanpa merusak benda-benda yang dilewatinya. Ada beberapa tipe pengangkal petir diantaranya:
A. Penangkal Petir Kovensional
Metode ini dikembangkan oleh Benjamin Franklin 150 tahun yang lalu yakni dengan membuat sistem penyalur arus listrik yang menghubungkan antara bagian atas bangunan dan tempat pembumian (grounding). Dalam metode ini aspek yang harus diperhatikan adalah kabel grouding yang turun, kabel penghantar, jumlah air terminal yang diperlukan. Hal tersebut harus sesuai dengan standar Nasioal Indonesia(SNI-03-0714.1 - 2004) yang mengacu pada British standard dan dapat digambarkan sebagai berikut :
v Untuk bangunan sampai dengan 20 meter radius perlindungannya adalah 45 derajat. Atau bila tinggi penangkal petir konvensional = 1 meter, maka radius = 1 meter. Dengan demikian diperlukan 1 buah rod tiap jarak 2 meter.
v Untuk tinggi bangunan sampai dengan 30 meter radius perlindungan adalah 30 derajat. Atau bila tinggi penangkal petir konvensional = 1 meter, maka radius = 0,75 meter.
B. Penangkal Petir RadioAktif
Sistem ini cocok untuk bangunan tinggi. Satu bangunan cukup menggunakan sebuah penangkal petir. Alatnya disebut Preventor, yang bekerja berdasarkan reaksi netralisasi ion dengan menggunakan bahan radio aktif. Hasil dari penelitian menjelaskan bahwa petir terjadi karena ada muatan listrik di awan yang dihasilkan oleh proses ionisasi. Maka usaha menghambat proses ionisasi di lakukan dengan cara menggunakan zat radioaktif seperti Radiun 226 dan Ameresium 241 yang mampu menghamburkan ion radiasi yang bisa menetralkan muatan listrik awan. Akan tetapi berdasarkan kesepakatan internasional keberadaan penangkal petir jenis ini sudah dilarang pemakaiannya karena bahaya zat radiokatif terhadap mahluk hidup.
C. Penangkal Petir Elektrostatik
Prinsip kerja penangkal petir Elektrostatik mengadopsi sebagian sistem penangkal petir Radioaktif dengan menambah muatan pada ujung batang penangkal petir agar petir selalu memilih ujung ini untuk disambar. Perbedaan dari sistem Radioaktif dan Elektrostatik terdapat pada pilihan energi yang dipakai. Untuk Penangkal Petir Radioaktif muatan listrik dihasilkan dari proses hamburan zat radiokatif sedangkan pada penangkal petir elektrostatik energi listrik dihasilkan dari Listrik Awan yang menginduksi permukaan bumi.
Sistem kerja dari penangkal petir (istilah depnaker = penyalur petir) adalah berusaha untuk menarik lidah petir/luncuran dari awan; dimana penyalur petir terpasang akan menciptakan kondisi yang lebih bermuatan listrik daripada daeran sekitar ( bangunan, pohon, dll) sehingga luncuran dari awan akan menuju penyalur petir tersebut bukan ke bangunan atau pohon di sekitarnya (dalam radius 100 meter dari penyalur petir terpasang). Sistem penangkal petir ini bekerja hanya pada saat terjadi luncuran muatan dari awan. Pada saat luncuran dari awan; semua struktur, pohon dan penyalur petir akan melepaskan muatan positif, namun di karenakan kondisi yang di inginkan oleh lidah peitr tersebut tercipta di penyalur petir yang terpasang. Bila lighting strike recorder (LSR) terpasang akan dapat diketahui efektifitas penangkal petir terpasang.
Sistem penghantar turun
Sistem ini berfungsi untuk menyalurkan arus petir ke tanah secara aman. Untuk penghantar turun (downconductor) terdapat beberapa alternatif pemilihan kabel. Berdasarkan PUIL 2000 sistem penghantar turun minimal menggunakan kabel tembaga (BC minimal 50mm2
Petir memiliki potensi luar biasa sebagai sumber energi dimasa depan. Walaupun hingga saat ini belum ketemu teknologi pemanfaatannya. Bayangkan saja, energi yang dilepaskan oleh satu sambaran petir lebih besar daripada energi yang dihasilkan oleh seluruh pusat pembangkit tenaga listrik di Amerika. Suhu pada jalur di mana petir terbentuk dapat mencapai 10.000 derajat Celcius. Padahal suhu di dalam tanur untuk meleburkan besi “hanya” antara 1.050 dan 1.100 derajat Celcius. Panas yang luar biasa ini berarti bahwa petir dapat dengan mudah membakar dan menghancurkan seluruh unsur yang ada di muka bumi. Fakta lain bahwa cahaya yang dikeluarkan oleh petir lebih terang daripada cahaya 10 juta bola lampu pijar berdaya 100 watt.
PENUTUP
Pada dasarnya petir sangatlah berbahaya, tapi kita bisa mengurangi tingkat bahaya dari petir itu sendiri dengan menggunakan penangkal petir. Telah diketahui bahwa ada 3 sistem penangkal petir yaitu sistem konvensional, sistem radioaktif, dan sistem elektroktrostatis. Tapi hanya 2 yang digunakan pada penerapannya di karenakan efek kebocoran radiasi dari sistem radioaktif. Petir juga mempunyai potensi luar biasa sebagai energy dimasa depan, hanya saja hingga saat ini belum di temukan tegnologi pemanfaatannya.
DAFTAR PUSTAKA
Alex Larsen (1905). “Photographing Lightning With a Moving Camera”. Annual Report Smithsonian Institute 60 (1): 119-127.
Anna Gosline (May 2005). “Thunderbolts from space”. New Scientist 186 (2498): 30-34.

SISTEM PENANGKAL PETIR

Kamis, 17 Maret 2011

Rangkaian Pengendali Motor listrik 3 fasa untuk Pompa Air Satu Tingkat



A. Rangkaian Utama (tanpa pengasutan)

B. Rangkaian kontrol

C. Tata letak sistem pengendalian

D. Prinsip kerja pengendalian
  • Motor Pompa dapat dioperasikan secara langsung tanpa pengasutan, secara manual dan otomatis menggunakan saklar 3 posisi “Man-0-Auto”
  • Bila saklar diputar pada posisi “Auto”, motor pompa akan bekerja secara otomatis mengikuti posisi saklar pelampung S1 yang menggantung sampai batas / level air bawah
  • Juga dapat berlaku sebaliknya, jika permukaan air mencapai batas/level atas, pompa akan mati
  • Lampu indicator H1 menyala sebagai tanda motor pompa bekerja dan bila lampu padam motor pompa tidak bekerja
  • Alarm/Sirine H2 akan berbunyi jika terjadi gangguan beban lebih pada motor atau bila permukaan air tendon melampaui batas/level atas dan mengaktifkan saklar pelampung S2. Maka untuk mematikan alarm digunakan sebuah tombol set S3