Jumat, 18 November 2011

STOP KONTAK (PLUG DAN SOCKET)

Artikel kali ini akan membahas lebih detail lagi mengenai satu peralatan instalasi listrik yang digunakan, yaitu Stop Kontak/ plug dan socket. Plug dan socket listrik (dalam bahasa sehari-hari dikenal dengan colokan dan stop-kontak) 2 pin awalnya diciptakan oleh Harvey Hubbell dan dipatenkan pada tahun 1904. Karya Hubbell ini pun menjadi rujukan pembuatan plug dan socket setelahnya dan menjelang tahun 1915 penggunaannya semakin meluas, walaupun pada tahun-tahun 1920an peralatan rumah serta komersial masih menggunakan socket lampu jenis screw-base Edison.

Kemudian plug 3 pin diciptakan oleh Albert Büttner pada tahun 1926 dan mendapatkan hak paten dari badan paten jerman (DE 370538), karyanya tersebut dikenal dengan nama "schuko". Namun ada juga pencipta plug 3 pin ini, yaitu Philip F. Labre, semasa beliau masih menuntut ilmu di Sekolah Kejuruan Milwaukee (MSOE) dan mendapatkan hak paten dari amerika serikat pada 5 Juni 1928. Siapa pun penenmunya, penemuan plug atau colokan 3 pin ini merupakan sesuatu yang sangat luar biasa, karena memperhatikan aspek keselamatan manusia, sehingga plug atau colokan listrik jenis ini menjadi standar dihampir semua negara sampai saat ini.

Jenis-Jenis Plug dan Socket

Jenis-jenis plug dan socket diklasifikasikan berdasarkan tegangan dan frekuensi yang digunakan pada suatu negara, sehingga dapat dikatakan hanya ada dua jenis yang berdasarkan klasifikasi ini, yaitu:
• Untuk tegangan 110-220 volt pada frekuensi 60 hz
• Untuk tegangan 220-240 volt pada frekuensi 50 hz

Sedangkan berdasarkan pengamannya plug dan socket diklasifikasikan menjadi:
• Tanpa pembumian, ungrounded. Biasanya untuk plug yang 2 pin, dan menurut standar IEC merupakan class-II
• Dengan pembumian, Grounded. Biasanya untuk plug yang 3 pin, dan menurut standar IEC merupakan class-I
• Dengan pembumian dan sekering, Grounded and fuse. Biasanya untuk plug yang 3 pin.

Berdasarkan klasifikasi-klasifikasi diatas, maka plug dan socket setiap negara dapat berbeda-beda, dan secara umum jenis dan standar dari plug dan socket adalah:

1. Jenis A


• 2 pin dengan standar NEMA 1–15 (North American 15 A/125 V ungrounded)
plug jenis A juga dapat digunakan pada socket jenis B.

• JISC 8303, Class II (Japanese 15 A/100 V ungrounded) merupakan standar plug dan socket di jepang yang mirip dengan plug dan socket jenis A, dan juga harus lulus uji dari MITI (Ministry of International Trade and Industry) dan JIS (Japanese Industrial Standards).


2. Jenis B


• 3 pin dengan standar NEMA 5–15 (North American 15 A/125 V grounded), merupakan plug dan socket standar di amerika utara (Canada, Amerika Serikat dan Mexico), juga digunakan di Amerika tengah, Karibia, Colombia, Ecuador, Venezuela dan sebagian Brazil, Jepang, Taiwan dan Saudi Arabia

• 3 pin dengan standar NEMA 5–20 (North American 20 A/125 V grounded), digunakan untuk instalasi rumah tanggal mulai tahun 1992, dengan slot socket model T.

• JIS C 8303, Class I (Japanese 15 A/100 V grounded)

3. Jenis C

• CEE 7/16 (Europlug 2.5 A/250 V ungrounded), Plug ini biasa digunakan dalam aplikasi-aplikasi class II (ungrounded). Plug ini adalah salah satu plug internasional yang paling banyak digunakan karena cocok dengan soket apapun yang bisa menerima kontak 4.0 – 4.8 mm dengan jarak pisah 19 mm. Plug ini bisa digunakan di semua negara-negara Eropa kecuali Inggris dan Irlandia (karena Inggris/Irlandia punya standar tersendiri). Tapi penggunaan plug ini secara umum memang terbatas untuk penggunaan aplikasi-aplikasi Class II yang memerlukan arus di bawah 2,5 A dan unpolarized.


• CEE 7/17 (German/French 16 A/250 V ungrounded), ukurannya hampir sama dengan tipe E dan F, pada plug nya dilapisi dengan karet atau plastik. Digunakan juga di korea selatan untuk peralatan listrik yang tidak dibumikan dan di italia di kategorikan dengan Italian standard CEI 23-5


• BS 4573 (UK shaver), digunakan di Inggris untuk kegunaan alat-alat cukur atau shaver yang ada di kamar mandi. Jarak antar pin 5,08 mm dengan panjang pin 15,88 mm dan telah digunakan di inggris sejak tahun 1960an.

• Soviet plug (6 A/250 V ungrounded), hampir sama dengan French type E dan CEE7/17

4. Jenis D


• BS 546 (United Kingdom, 5 A/250 V grounded), equivalent to IA6A3 (India), rated at 6A / 250V

• BS 546 (United Kingdom, 15 A/250 V grounded), equivalent to IA16A3 (India) & SABS 164 (South Africa), rated at 16A / 250V

5. Jenis E


CEE 7/5 (French type E)

6. Jenis F


• CEE 7/4 (German "Schuko" 16 A/250 V grounded)
• Gost 7396 (Russian 10 A/250 V grounded)

7. Jenis E/F Hybrid


CEE 7/7 (French/German 16 A/250 V grounded)

8. Jenis G


BS 1363 (British 13 A/230-240 V 50 Hz grounded and fused), equivalent to IS 401 & 411 (Ireland), MS 589 (Malaysia) and SS 145 (Singapore), SASO 2203 (Saudi Arabia)

9. Jenis H


• SI 32 (Israeli 16 A/250 V grounded)
• Thai 3 pin plug TIS166-2549 (2006)

10. Jenis I


• AS/NZS 3112 (Australasian 10 A/240 V)

• CPCS-CCC (Chinese 10 A/250 V)


• IRAM 2073 (Argentinian 10 A/250 V)

11. Jenis J


SEV 1011 (Swiss 10 A/250 V)

12. Jenis K


Section 107-2-D1 (Danish 13 A/250 V earthed)

13. Jenis L

• CEI 23-16/VII (Italian 10 A/250 V and 16 A/250 V)
• CEI 23-16/VII (Italian 10 A/250 V)
• CEI 23-16/VII (Italian 16 A/250 V)

14. Jenis M
BS 546 (South African 15 A/250 V)

15. Belum Mendapatkan kategori
IEC 60906-1 (Brazilian 10 A and 20A /250 V)

Kesimpulan:
Ada 14 pola standar plug dan socket yang digunakan di seluruh dunia, baik untuk aplikasi-aplikasi Class I (grounded) maupun Class II (ungrounded), dengan rating arus berkisar 2,5 – 16 A. Standar-standar tersebut adalah standar-standar Amerika Serikat, Amerika Utara, Argentina, Australia, Daratan Eropa, Europlug, Cina, Denmark, India/Afrika Selatan, Israel, Itali, Jepang, Swiss, dan Inggris/Irlandia.
semoga bermanfaat,

sumber gambar: wikipedia

SISTEM TENAGA LISTRIK 3 FASA

Pada sistem tenaga listrik 3 fase, idealnya daya listrik yang dibangkitkan, disalurkan dan diserap oleh beban semuanya seimbang, P pembangkitan = P pemakain, dan juga pada tegangan yang seimbang. Pada tegangan yang seimbang terdiri dari tegangan 1 fase yang mempunyai magnitude dan frekuensi yang sama tetapi antara 1 fase dengan yang lainnya mempunyai beda fase sebesar 120°listrik, sedangkan secara fisik mempunyai perbedaan sebesar 60°, dan dapat dihubungkan secara bintang (Y, wye) atau segitiga (delta, Δ, D).


Gambar 1. sistem 3 fase.

Gambar 1 menunjukkan fasor diagram dari tegangan fase. Bila fasor-fasor tegangan tersebut berputar dengan kecepatan sudut dan dengan arah berlawanan jarum jam (arah positif), maka nilai maksimum positif dari fase terjadi berturut-turut untuk fase V1, V2 dan V3. sistem 3 fase ini dikenal sebagai sistem yang mempunyai urutan fasa a – b – c . sistem tegangan 3 fase dibangkitkan oleh generator sinkron 3 fase.

Hubungan Bintang (Y, wye)

Pada hubungan bintang (Y, wye), ujung-ujung tiap fase dihubungkan menjadi satu dan menjadi titik netral atau titik bintang. Tegangan antara dua terminal dari tiga terminal a – b – c mempunyai besar magnitude dan beda fasa yang berbeda dengan tegangan tiap terminal terhadapa titik netral. Tegangan Va, Vb dan Vc disebut tegangan “fase” atau Vf.



Gambar 2. Hubungan Bintang (Y, wye).

Dengan adanya saluran / titik netral maka besaran tegangan fase dihitung terhadap saluran / titik netralnya, juga membentuk sistem tegangan 3 fase yang seimbang dengan magnitudenya (akar 3 dikali magnitude dari tegangan fase).
Vline = akar 3 Vfase = 1,73Vfase

Sedangkan untuk arus yang mengalir pada semua fase mempunyai nilai yang sama,
ILine = Ifase
Ia = Ib = Ic

Hubungan Segitiga

Pada hubungan segitiga (delta, Δ, D) ketiga fase saling dihubungkan sehingga membentuk hubungan segitiga 3 fase.


Gambar 3. Hubungan Segitiga (delta, Δ, D).

Dengan tidak adanya titik netral, maka besarnya tegangan saluran dihitung antar fase, karena tegangan saluran dan tegangan fasa mempunyai besar magnitude yang sama, maka:
Vline = Vfase

Tetapi arus saluran dan arus fasa tidak sama dan hubungan antara kedua arus tersebut dapat diperoleh dengan menggunakan hukum kirchoff, sehingga:
Iline = akar 3 Ifase = 1,73Ifase

Daya pada Sistem 3 Fase

1. Daya sistem 3 fase Pada Beban yang Seimbang

Jumlah daya yang diberikan oleh suatu generator 3 fase atau daya yang diserap oleh beban 3 fase, diperoleh dengan menjumlahkan daya dari tiap-tiap fase. Pada sistem yang seimbang, daya total tersebut sama dengan tiga kali daya fase, karena daya pada tiap-tiap fasenya sama.


Gambar 4. Hubungan Bintang dan Segitiga yang seimbang.

Jika sudut antara arus dan tegangan adalah sebesar θ, maka besarnya daya perfasa adalah

Pfase = Vfase.Ifase.cos θ

sedangkan besarnya total daya adalah penjumlahan dari besarnya daya tiap fase, dan dapat dituliskan dengan,

PT = 3.Vf.If.cos θ

• Pada hubungan bintang, karena besarnya tegangan saluran adalah 1,73Vfase maka tegangan perfasanya menjadi Vline/1,73, dengan nilai arus saluran sama dengan arus fase, IL = If, maka daya total (PTotal) pada rangkaian hubung bintang (Y) adalah:

PT = 3.VL/1,73.IL.cos θ = 1,73.VL.IL.cos θ

• Dan pada hubung segitiga, dengan besaran tegangan line yang sama dengan tegangan fasanya, VL = Vfasa, dan besaran arusnya Iline = 1,73Ifase, sehingga arus perfasanya menjadi IL/1,73, maka daya total (Ptotal) pada rangkaian segitiga adalah:
PT = 3.IL/1,73.VL.cos θ = 1,73.VL.IL.cos θ

Dari persamaan total daya pada kedua jenis hubungan terlihat bahwa besarnya daya pada kedua jenis hubungan adalah sama, yang membedakan hanya pada tegangan kerja dan arus yang mengalirinya saja, dan berlaku pada kondisi beban yang seimbang.

2. Daya sistem 3 fase pada beban yang tidak seimbang

Sifat terpenting dari pembebanan yang seimbang adalah jumlah phasor dari ketiga tegangan adalah sama dengan nol, begitupula dengan jumlah phasor dari arus pada ketiga fase juga sama dengan nol. Jika impedansi beban dari ketiga fase tidak sama, maka jumlah phasor dan arus netralnya (In) tidak sama dengan nol dan beban dikatakan tidak seimbang. Ketidakseimbangan beban ini dapat saja terjadi karena hubung singkat atau hubung terbuka pada beban.

Dalam sistem 3 fase ada 2 jenis ketidakseimbangan, yaitu:
1. Ketidakseimbangan pada beban.
2. ketidakseimbangan pada sumber listrik (sumber daya).

Kombinasi dari kedua ketidakseimbangan sangatlah rumit untuk mencari pemecahan permasalahannya, oleh karena itu kami hanya akan membahas mengenai ketidakseimbangan beban dengan sumber listrik yang seimbang.



Gambar 5. Ketidakseimbangan beban pada sistem 3 fase.

Pada saat terjadi gangguan, saluran netral pada hubungan bintang akan teraliri arus listrik. Ketidakseimbangan beban pada sistem 3 fase dapat diketahui dengan indikasi naiknya arus pada salahsatu fase dengan tidak wajar, arus pada tiap fase mempunyai perbedaan yang cukup signifikan, hal ini dapat menyebabkan kerusakan pada peralatan.